Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 6(35): 22700-22708, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34514241

RESUMO

Lateral flow immunoassays (LFIs) are simple, point-of-care diagnostic devices used for detecting biological agents or other analytes of interest in a sample. LFIs are predominantly singleplex assays, interrogating one target analyte at a time. There is a need for multiplex LFI devices, e.g., a syndromic panel to differentiate pathogens causing diseases exhibiting similar symptoms. Multiplex LFI devices would be especially valuable in instances where sample quantity is limiting and reducing assay time and costs is critical. There are limitations to the design parameters and performance characteristics of a multiplex LFI assay with many horizontal test lines due to constraints in capillary flow dynamics. To address some of the performance issues, we have developed a spot array multiplex LFI using Braille format (hence called Blind Spot) and a sensor, MACAW (Modular Automated Colorimetric Analyses Widget), that can analyze and interpret the results. As a proof of concept, we created a multiplex toxin panel, for detecting three toxins, using two letter codes for each. The results indicated that the six-plex, triple toxin assay performs as well as singleplex assays. The sensor-based calls are better compared to human interpretation in discriminating and interpreting ambiguous test results correctly especially at lower antigen concentrations and from strips with blemishes.

2.
Anal Chem ; 93(19): 7283-7291, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-33955213

RESUMO

The goal of this work was to develop recombinantly expressed variable domains derived from camelid heavy-chain antibodies known as single-domain antibodies (sdAbs) directed against the SARS-CoV-2 nucleocapsid protein for incorporation into detection assays. To achieve this, a llama was immunized using a recombinant SARS-CoV-2 nucleocapsid protein and an immune phage-display library of variable domains was developed. The sdAbs selected from this library segregated into five distinct sequence families. Three of these families bind to unique epitopes with high affinity, low nM to sub-nM KD, as determined by surface plasmon resonance. To further enhance the utility of these sdAbs for the detection of nucleocapsid protein, homobivalent and heterobivalent genetic fusion constructs of the three high-affinity sdAbs were prepared. The effectiveness of the sdAbs for the detection of nucleocapsid protein was evaluated using MagPlex fluid array assays, a multiplexed immunoassay on color-coded magnetic microspheres. Using the optimal bivalent pair, one immobilized on the microsphere and the other serving as the biotinylated recognition reagent, a detection limit as low as 50 pg/mL of recombinant nucleocapsid and of killed virus down to 1.28 × 103 pfu/mL was achieved. The sdAbs described here represent immune reagents that can be tailored to be optimized for a number of detection platforms and may one day aid in the detection of SARS-CoV-2 to assist in controlling the current pandemic.


Assuntos
COVID-19 , Camelídeos Americanos , Anticorpos de Domínio Único , Animais , Humanos , Proteínas do Nucleocapsídeo/genética , SARS-CoV-2
3.
J Microbiol Methods ; 152: 143-147, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30077693

RESUMO

Phages are natural predators of bacteria and have been exploited in bacterial detection because of their exquisite specificity to their cognate bacterial hosts. In this study, we present a "proof of concept" bacteriophage amplification-coupled assay as a surrogate for detecting a bacterium present in a sample. The assay entails detection of progeny phage resulting from infection and subsequent growth inside the bacterium present in suspected samples. This approach reduces testing time and enhances sensitivity to identify pathogens compared to traditional overnight plaque assay. Further, the assay has the ability to discriminate between live and dead cells since phages require live host cells to infect and replicate. To demonstrate its utility, phage MS2 amplification-coupled, bead-based sandwich type immunoassay on the Luminex® MAGPIX instrument for Escherichia coli detection was performed. The assay not only showed live cell discrimination ability but also a limit of E. coli detection of 1 × 102 cells/mL of live cells after a 3-h incubation. In addition, the sensitivity of the assay was not impaired in the presence of dead cells. These results demonstrate that bacteriophage amplification-coupled assay can be a rapid live cell detection assay compared to traditional culture methods and a promising tool for quick validation of bacterial inactivation. Combined with the unique multiplex bead chemistry of the Luminex® MAGPIX platform, the phage assay can be expanded to be an ultra-deep multiplex assay for the simultaneous detection of multiple pathogens using specific phages directed against the target pathogens.


Assuntos
Técnicas Bacteriológicas/métodos , Bacteriófagos , Escherichia coli/isolamento & purificação , Escherichia coli/virologia , Imunoensaio/instrumentação , Imunoensaio/métodos , Contagem de Colônia Microbiana/métodos , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Levivirus , Sensibilidade e Especificidade , Replicação Viral
4.
PLoS Genet ; 9(11): e1003943, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24278030

RESUMO

Synthesis of ribosomal RNA by RNA polymerase I (RNA pol I) is an elemental biological process and is key for cellular homeostasis. In a forward genetic screen in C. elegans designed to identify DNA damage-response factors, we isolated a point mutation of RNA pol I, rpoa-2(op259), that leads to altered rRNA synthesis and a concomitant resistance to ionizing radiation (IR)-induced germ cell apoptosis. This weak apoptotic IR response could be phenocopied when interfering with other factors of ribosome synthesis. Surprisingly, despite their resistance to DNA damage, rpoa-2(op259) mutants present a normal CEP-1/p53 response to IR and increased basal CEP-1 activity under normal growth conditions. In parallel, rpoa-2(op259) leads to reduced Ras/MAPK pathway activity, which is required for germ cell progression and physiological germ cell death. Ras/MAPK gain-of-function conditions could rescue the IR response defect in rpoa-2(op259), pointing to a function for Ras/MAPK in modulating DNA damage-induced apoptosis downstream of CEP-1. Our data demonstrate that a single point mutation in an RNA pol I subunit can interfere with multiple key signalling pathways. Ribosome synthesis and growth-factor signalling are perturbed in many cancer cells; such an interplay between basic cellular processes and signalling might be critical for how tumours evolve or respond to treatment.


Assuntos
Apoptose/efeitos da radiação , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , RNA Ribossômico/biossíntese , Ribossomos/genética , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Dano ao DNA/genética , Dano ao DNA/efeitos da radiação , Células Germinativas/efeitos da radiação , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Mutação Puntual , RNA Polimerase I/genética , RNA Ribossômico/efeitos da radiação , Radiação Ionizante , Transdução de Sinais , Proteína Supressora de Tumor p53/genética
5.
Cell ; 120(3): 357-68, 2005 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-15707894

RESUMO

p53 is a tumor suppressor gene whose regulation is crucial to maintaining genome stability and for the apoptotic elimination of abnormal, potentially cancer-predisposing cells. C. elegans contains a primordial p53 gene, cep-1, that acts as a transcription factor necessary for DNA damage-induced apoptosis. In a genetic screen for negative regulators of CEP-1, we identified a mutation in GLD-1, a translational repressor implicated in multiple C. elegans germ cell fate decisions and related to mammalian Quaking proteins. CEP-1-dependent transcription of proapoptotic genes is upregulated in the gld-1(op236) mutant and an elevation of p53-mediated germ cell apoptosis in response to DNA damage is observed. Further, we demonstrate that GLD-1 mediates its repressive effect by directly binding to the 3'UTR of cep-1/p53 mRNA and repressing its translation. This study reveals that the regulation of cep-1/p53 translation influences DNA damage-induced apoptosis and demonstrates the physiological importance of this mechanism.


Assuntos
Apoptose/genética , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica/fisiologia , Proteínas Repressoras/metabolismo , Proteína Supressora de Tumor p53/biossíntese , Regiões 3' não Traduzidas/genética , Animais , Sítios de Ligação/fisiologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Dano ao DNA/genética , Feminino , Células Germinativas/citologia , Células Germinativas/metabolismo , Masculino , Mutação/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Diferenciação Sexual/fisiologia , Proteína Supressora de Tumor p53/genética , Regulação para Cima/genética
6.
Nat Genet ; 36(8): 906-12, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15273685

RESUMO

c-Abl, a conserved nonreceptor tyrosine kinase, integrates genotoxic stress responses, acting as a transducer of both pro- and antiapoptotic effector pathways. Nuclear c-Abl seems to interact with the p53 homolog p73 to elicit apoptosis. Although several observations suggest that cytoplasmic localization of c-Abl is required for antiapoptotic function, the signals that mediate its antiapoptotic effect are largely unknown. Here we show that worms carrying an abl-1 deletion allele, abl-1(ok171), are specifically hypersensitive to radiation-induced apoptosis in the Caenorhabditis elegans germ line. Our findings delineate an apoptotic pathway antagonized by ABL-1, which requires sequentially the cell cycle checkpoint genes clk-2, hus-1 and mrt-2; the C. elegans p53 homolog, cep-1; and the genes encoding the components of the conserved apoptotic machinery, ced-3, ced-9 and egl-1. ABL-1 does not antagonize germline apoptosis induced by the DNA-alkylating agent ethylnitrosourea. Furthermore, worms treated with the c-Abl inhibitor STI-571 (Gleevec; used in human cancer therapy), two newly synthesized STI-571 variants or PD166326 had a phenotype similar to that generated by abl-1(ok171). These studies indicate that ABL-1 distinguishes proapoptotic signals triggered by two different DNA-damaging agents and suggest that C. elegans might provide tissue models for development of anticancer drugs.


Assuntos
Apoptose/efeitos da radiação , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Genes p53 , Proteínas Proto-Oncogênicas c-abl/fisiologia , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/efeitos da radiação , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Divisão Celular , Linhagem Celular , Deleção Cromossômica , Modelos Genéticos , Dados de Sequência Molecular , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/genética , Transformação Genética
7.
Curr Biol ; 12(22): 1908-18, 2002 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-12445383

RESUMO

BACKGROUND: The inability to efficiently repair DNA damage or remove cells with severely damaged genomes has been linked to several human cancers. Studies in yeasts and mammals have identified several genes that are required for proper activation of cell cycle checkpoints following various types of DNA damage. However, in metazoans, DNA damage can induce apoptosis as well. How DNA damage activates the apoptotic machinery is not fully understood. RESULTS: We demonstrate here that the Caenorhabditis elegans gene hus-1 is required for DNA damage-induced cell cycle arrest and apoptosis. Following DNA damage, HUS-1 relocalizes and forms distinct foci that overlap with chromatin. Relocalization does not require the novel checkpoint protein RAD-5; rather, relocalization appears more frequently in rad-5 mutants, suggesting that RAD-5 plays a role in repair. HUS-1 is required for genome stability, as demonstrated by increased frequency of spontaneous mutations, chromosome nondisjunction, and telomere shortening. Finally, we show that DNA damage increases expression of the proapoptotic gene egl-1, a response that requires hus-1 and the p53 homolog cep-1. CONCLUSIONS: Our findings suggest that the RAD-5 checkpoint protein is not required for HUS-1 to relocalize following DNA damage. Furthermore, our studies reveal a new function of HUS-1 in the prevention of telomere shortening and mortalization of germ cells. DNA damage-induced germ cell death is abrogated in hus-1 mutants, in part, due to the inability of these mutants to activate egl-1 transcription in a cep-1/p53-dependent manner. Thus, HUS-1 is required for p53-dependent activation of a BH3 domain protein in C. elegans.


Assuntos
Apoptose/genética , Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular/fisiologia , Dano ao DNA , Mutação , Proteínas Repressoras/fisiologia , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Sequência de Bases , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Primers do DNA , Genoma , Genótipo , Proteínas de Fluorescência Verde , Humanos , Proteínas Luminescentes/genética , Camundongos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteínas de Schizosaccharomyces pombe , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
8.
Proc Natl Acad Sci U S A ; 99(4): 2158-63, 2002 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-11830642

RESUMO

Mismatch repair genes are important in maintaining the fidelity of DNA replication. To determine the function of the Caenorhabditis elegans homologue of the MSH2 mismatch repair gene (msh-2), we isolated a strain of C. elegans with an insertion of the transposable element Tc1 within msh-2. Early-passage msh-2 mutants were similar to wild-type worms with regard to lifespan and meiotic chromosome segregation but had slightly reduced fertility. The mutant worms had reduced DNA damage-induced germ-line apoptosis after genotoxic stress. The msh-2 mutants also had elevated levels of microsatellite instability and increased rates of reversion of the dominant unc-58(e665) mutation. In addition, serially passaged cultures of msh-2 worms died out much more quickly than those of wild-type worms. These results demonstrate that msh-2 function in C. elegans is important in regulating both short- and long-term genomic stability.


Assuntos
Pareamento Incorreto de Bases , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Proteínas de Ligação a DNA , DNA/genética , Repetições de Microssatélites , Proteínas Proto-Oncogênicas , Alelos , Sequência de Aminoácidos , Animais , Apoptose , Proteínas de Caenorhabditis elegans/biossíntese , Dano ao DNA , Reparo do DNA , Elementos de DNA Transponíveis , Relação Dose-Resposta à Radiação , Genes Dominantes , Genoma , Humanos , Meiose , Modelos Genéticos , Dados de Sequência Molecular , Proteína MutS de Ligação de DNA com Erro de Pareamento , Proteína 2 Homóloga a MutS , Mutação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...